metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[*µ*-1,2-Disalicyloylhydrazine(2–)- $\kappa^3 N, O, O': \kappa^3 N', O'', O'''$]bis[tripyridinenickel(II)] pyridine disolvate

Yu-Ting Chen,^{a,b} Jian-Min Dou,^a* Da-Cheng Li,^a Da-Qi Wang^a and Yue-Hua Zhu^c

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, ^bDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China, and School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: jmdou@lcu.edu.cn

Received 28 June 2007; accepted 10 July 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.053; wR factor = 0.152; data-to-parameter ratio = 14.6.

The title complex, $[Ni_2(C_{14}H_8N_2O_4)(C_5H_5N)_6] \cdot 2C_5H_5N$, is a polymorph of a previously reported compound [Chen & Liu (2005). Chin. J. Inorg. Chem. 21, 15-20]. The 1,2-disalicyloylhydrazine ligand lies on an inversion center and coordinates to two Ni^{II} atoms. Each Ni^{II} atom is octahedrally coordinated by a phenolate O atom, a carbonyl O atom and a hydrazine N atom of the ligand and three pyridine N atoms.

Related literature

For related literature, see: Chen & Liu (2005); Dou et al. (2006); Kwak et al. (2000).

Experimental

Crystal data

$Ni_2(C_{14}H_8N_2O_4)(C_5H_5N)_6]$	
$2C_5H_5N$	
$M_r = 1018.44$	
Tetragonal, $I4_1/a$	
a = 27.040 (2) Å	
= 14.3178 (18) Å	

Data collection

Bruker SMART 1000 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.779, T_{\max} = 0.861$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	102 restraints
$wR(F^2) = 0.152$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
4609 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$
316 parameters	

 $V = 10468.6 (17) \text{ Å}^3$

21466 measured reflections 4609 independent reflections

2743 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.77 \text{ mm}^{-1}$

T = 298 (2) K $0.34 \times 0.23 \times 0.20$ mm

 $R_{\rm int} = 0.064$

Z = 8

Table 1 Selected bond lengths (Å).

Ni1-N1	1.955 (3)	Ni1-N4	2.083 (3)
Ni1-O2	1.989 (3)	Ni1-N2	2.196 (4)
Ni1-O1 ⁱ	2.060 (3)	Ni1-N3	2.201 (3)

Symmetry code: (i) -x + 1, -y, -z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20671048).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2070).

References

- Chen, X. H. & Liu, S. X. (2005). Chin. J. Inorg. Chem. 21, 15-20.
- Dou, J. M., Liu, M. L., Li, D. C. & Wang, D. Q. (2006). Eur. J. Inorg. Chem. 23, 4866-4871.
- Kwak, B., Rhee, H. & Lah, M. S. (2000). Polyhedron, 19, 1985-1994.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2118 [doi:10.1107/S1600536807033582]

$[\mu$ -1,2-Disalicyloylhydrazine(2-)- $\kappa^3 N, 0, 0': \kappa^3 N', 0'', 0''']$ bis[tripyridinenickel(II)] pyridine disolvate

Y.-T. Chen, J.-M. Dou, D.-C. Li, D.-Q. Wang and Y.-H. Zhu

Comment

Recently, we have synthesized two metallacrowns using *N*-acyl-3-hydroxy-2-naphthalenecarbohydrazide (Dou *et al.*, 2006). As an extension of our work on the structural characterization of naphthalenecarbohydrazide compounds, the title complex, (I), was synthesized and characterized by X-ray diffraction.

The complex (I) (space group I4₁/a) is a polymorph of the compound (space group $P2_1/c$) previously reported by Chen & Liu (2005), with the same formula [Ni₂(C₁₄H₈N₂O₄)(C₅H₅N)₆]·2C₅H₅N. The complex molecule of (I) lies on an inversion center (Fig. 1). The 1,2-disalicyloylhydrazine molecule acts as a hexadentate tetravalent anionic ligand linking two Ni^{II} atoms. The iminophenolate group (O2 and N1) and the iminoacyl group (O1ⁱ and N1; symmetry code: (i) 1 - x, -y, -z) of the ligand are coordinated to the Ni1 atom to form six-membered and five-membered chelating rings, respectively, with a dihedral angle of 1.7 (4)°. Besides the above three atoms coordinated to the Ni1 atom, there are other three pyridine N atoms bonded to the Ni1 atom. So the coordination geometry of the Ni1 atom can be described as an N₄O₂ octahedron. As shown in Table 1, the axial Ni—N distances are longer than the equatorial Ni—N and Ni—O distances, which shows the Ni^{II} atom in a distorted octahedral geometry. This typical Jahn-Teller elongation has been observed in the other complexes (Kwak *et al.*, 2000).

Experimental

A solution of Ni(CH₃CO₂)₂·H₂O (0.100 g, 0.4 mmol) in methanol (10 ml) was added to the mixture of 1,2-disalicyloylhydrazine (0.054 g, 0.2 mmol) and sodium hydroxide (0.032 g, 0.8 mmol) in pyridine (10 ml). A red solution was generated after stirring for 2 h at room temperature. The solution was allowed to stand for 2 weeks, whereupon red needle crystals were obtained (0.070 g, yield 34%).

Refinement

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, -y, -z.]

$[\mu-1,2-Disalicyloylhydrazine(2-)-\kappa^3 N,O,O':\kappa^3 N',O'',O''']$ bis[tripyridinenickel(II)] pyridine disolvate

Crystal data

[Ni ₂ (C ₁₄ H ₈ N ₂ O ₄)(C ₅ H ₅ N) ₆]·2C ₅ H ₅ N	Z = 8
$M_r = 1018.44$	$F_{000} = 4240$
Tetragonal, $I4_1/a$	$D_{\rm x} = 1.292 {\rm ~Mg~m}^{-3}$
Hall symbol: -I 4ad	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 27.040 (2) Å	Cell parameters from 3046 reflections
b = 27.040 (2) Å	$\theta = 2.2 - 21.5^{\circ}$
c = 14.3178 (18) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 298 (2) K
$\beta = 90^{\circ}$	Block, red
$\gamma = 90^{\circ}$	$0.34 \times 0.23 \times 0.20 \text{ mm}$
$V = 10468.6 (17) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	4609 independent reflections
Radiation source: fine-focus sealed tube	2743 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.064$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 32$
$T_{\min} = 0.779, T_{\max} = 0.861$	$k = -32 \rightarrow 30$
21466 measured reflections	$l = -17 \rightarrow 17$

Refinement

R	e	f	in	er	ne	en	t	(21	1	ŀ	7	2	
т														

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.053$

 $wR(F^2) = 0.152$

S = 1.02

4609 reflections

316 parameters

102 restraints

sup-2

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.31$ e Å⁻³ $\Delta\rho_{min} = -0.43$ e Å⁻³

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Z	$U_{\rm iso}^*/U_{\rm eq}$
Ni1	0.547168 (18)	0.061356 (19)	0.07264 (4)	0.0430 (2)
N1	0.50175 (11)	0.00672 (11)	0.0474 (2)	0.0402 (8)
N2	0.49003 (13)	0.11803 (14)	0.0520 (3)	0.0576 (9)
N3	0.61032 (12)	0.01068 (13)	0.0880 (3)	0.0498 (9)
N4	0.59618 (12)	0.12023 (12)	0.0881 (2)	0.0465 (9)
N5	0.7088 (6)	0.3732 (4)	0.3455 (7)	0.175 (4)
01	0.44541 (9)	-0.05583 (9)	0.07017 (18)	0.0443 (7)
O2	0.53200 (10)	0.05767 (9)	0.2084 (2)	0.0492 (7)
C1	0.47284 (14)	-0.02083 (14)	0.1014 (3)	0.0384 (9)
C2	0.47115 (14)	-0.00872 (14)	0.2032 (3)	0.0381 (9)
C3	0.49896 (14)	0.02951 (14)	0.2477 (3)	0.0420 (10)
C4	0.48975 (16)	0.03587 (16)	0.3447 (3)	0.0501 (11)
H4	0.5068	0.0607	0.3761	0.060*
C5	0.45740 (16)	0.00756 (17)	0.3939 (3)	0.0533 (11)
Н5	0.4528	0.0135	0.4572	0.064*
C6	0.43109 (17)	-0.03022 (17)	0.3502 (3)	0.0565 (12)
Н6	0.4094	-0.0502	0.3836	0.068*
C7	0.43824 (14)	-0.03701 (16)	0.2565 (3)	0.0468 (10)
H7	0.4203	-0.0617	0.2266	0.056*
C8	0.4812 (2)	0.1372 (2)	-0.0297 (5)	0.0941 (16)
H8	0.4977	0.1238	-0.0807	0.113*
С9	0.4494 (2)	0.1757 (3)	-0.0462 (5)	0.1082 (17)
Н9	0.4458	0.1884	-0.1062	0.130*
C10	0.4239 (2)	0.1948 (2)	0.0245 (5)	0.1061 (17)
H10	0.4014	0.2204	0.0154	0.127*
C11	0.4319 (3)	0.1754 (3)	0.1097 (5)	0.1206 (19)
H11	0.4149	0.1876	0.1613	0.145*
C12	0.4651 (2)	0.1376 (2)	0.1203 (5)	0.1042 (17)
H12	0.4702	0.1251	0.1801	0.125*
C13	0.61964 (19)	-0.02483 (18)	0.0272 (4)	0.0725 (15)
H13	0.5992	-0.0278	-0.0247	0.087*
C14	0.6578 (2)	-0.0574 (2)	0.0369 (5)	0.0954 (19)
H14	0.6626	-0.0819	-0.0077	0.115*
C15	0.6881 (2)	-0.0543 (3)	0.1102 (6)	0.101 (2)
H15	0.7142	-0.0763	0.1176	0.121*
C16	0.6796 (2)	-0.0176 (3)	0.1742 (5)	0.109 (2)
H16	0.6998	-0.0140	0.2264	0.131*
C17	0.6407 (2)	0.0136 (2)	0.1591 (4)	0.0812 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17	0.6354	0.0388	0.2023	0.097*
C18	0.62427 (18)	0.13505 (18)	0.0177 (4)	0.0663 (14)
H18	0.6214	0.1184	-0.0389	0.080*
C19	0.65742 (19)	0.17364 (19)	0.0229 (4)	0.0746 (15)
H19	0.6760	0.1828	-0.0289	0.090*
C20	0.66227 (19)	0.19768 (18)	0.1045 (4)	0.0708 (15)
H20	0.6844	0.2239	0.1104	0.085*
C21	0.6339 (2)	0.18282 (19)	0.1793 (4)	0.0796 (16)
H21	0.6365	0.1987	0.2368	0.096*
C22	0.60200 (19)	0.14440 (18)	0.1675 (3)	0.0679 (14)
H22	0.5831	0.1345	0.2185	0.081*
C23	0.6591 (6)	0.3744 (4)	0.3440 (8)	0.159 (4)
H23	0.6407	0.3514	0.3775	0.191*
C24	0.6371 (4)	0.4087 (7)	0.2945 (11)	0.185 (6)
H24	0.6029	0.4119	0.2979	0.223*
C25	0.6630 (7)	0.4396 (4)	0.2384 (10)	0.166 (6)
H25	0.6465	0.4614	0.1990	0.199*
C26	0.7111 (7)	0.4387 (4)	0.2398 (8)	0.177 (5)
H26	0.7291	0.4609	0.2036	0.213*
C27	0.7346 (3)	0.4057 (5)	0.2934 (11)	0.156 (4)
H27	0.7690	0.4053	0.2948	0.187*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0436 (3)	0.0457 (3)	0.0396 (3)	-0.0082 (2)	-0.0003 (2)	-0.0042 (2)
N1	0.0420 (18)	0.048 (2)	0.0302 (17)	-0.0042 (16)	0.0010 (15)	-0.0027 (15)
N2	0.056 (2)	0.060 (2)	0.058 (2)	0.0037 (18)	0.0054 (18)	-0.0014 (18)
N3	0.047 (2)	0.049 (2)	0.053 (2)	-0.0053 (17)	-0.0005 (18)	0.0004 (18)
N4	0.049 (2)	0.044 (2)	0.047 (2)	-0.0061 (16)	-0.0016 (17)	-0.0021 (17)
N5	0.249 (13)	0.146 (8)	0.131 (8)	0.039 (9)	-0.048 (8)	-0.037 (6)
01	0.0460 (16)	0.0466 (16)	0.0402 (17)	-0.0145 (13)	0.0017 (12)	-0.0025 (13)
O2	0.0572 (18)	0.0501 (17)	0.0403 (17)	-0.0147 (15)	0.0006 (13)	-0.0016 (13)
C1	0.037 (2)	0.041 (2)	0.037 (2)	0.0008 (18)	0.0024 (17)	0.0012 (18)
C2	0.039 (2)	0.041 (2)	0.034 (2)	0.0028 (18)	-0.0001 (17)	0.0000 (17)
C3	0.041 (2)	0.044 (2)	0.041 (2)	0.0062 (19)	-0.0039 (19)	-0.0007 (19)
C4	0.056 (3)	0.055 (3)	0.039 (3)	0.002 (2)	0.000 (2)	-0.010 (2)
C5	0.057 (3)	0.069 (3)	0.034 (2)	0.004 (2)	0.006 (2)	0.000 (2)
C6	0.055 (3)	0.064 (3)	0.050 (3)	-0.006 (2)	0.012 (2)	0.003 (2)
C7	0.041 (2)	0.055 (3)	0.045 (3)	-0.005 (2)	0.0049 (19)	-0.001 (2)
C8	0.105 (3)	0.096 (3)	0.081 (3)	0.040 (3)	0.003 (3)	0.006 (3)
C9	0.119 (4)	0.110 (4)	0.096 (4)	0.045 (3)	-0.003 (3)	0.010 (3)
C10	0.111 (4)	0.104 (4)	0.104 (4)	0.046 (3)	0.003 (3)	0.010 (3)
C11	0.133 (4)	0.125 (4)	0.105 (4)	0.058 (3)	0.022 (3)	0.004 (3)
C12	0.113 (4)	0.114 (4)	0.086 (4)	0.056 (3)	0.020 (3)	0.013 (3)
C13	0.085 (4)	0.067 (3)	0.066 (4)	0.023 (3)	-0.008 (3)	-0.007 (3)
C14	0.112 (5)	0.091 (4)	0.083 (5)	0.044 (4)	0.014 (4)	0.005 (3)
C15	0.071 (4)	0.114 (6)	0.118 (6)	0.035 (4)	0.003 (4)	0.026 (5)

C16	0.085 (5)	0.109 (5)	0.133 (7)	0.011 (4)	-0.054 (4)	0.001 (5)
C17	0.075 (4)	0.075 (4)	0.093 (4)	0.008 (3)	-0.031 (3)	-0.009 (3)
C18	0.070 (3)	0.070 (3)	0.059 (3)	-0.021 (3)	0.012 (3)	-0.006 (3)
C19	0.070 (3)	0.072 (4)	0.082 (4)	-0.025 (3)	0.011 (3)	0.002 (3)
C20	0.063 (3)	0.055 (3)	0.094 (4)	-0.020 (3)	-0.011 (3)	0.004 (3)
C21	0.088 (4)	0.071 (4)	0.080 (4)	-0.033 (3)	-0.006 (3)	-0.019 (3)
C22	0.076 (3)	0.071 (3)	0.056 (3)	-0.028 (3)	0.007 (3)	-0.012 (3)
C23	0.184 (11)	0.172 (11)	0.121 (9)	0.005 (10)	0.069 (9)	0.017 (7)
C24	0.128 (9)	0.245 (17)	0.184 (14)	0.104 (11)	-0.004 (8)	-0.064 (11)
C25	0.223 (15)	0.094 (7)	0.181 (13)	0.054 (9)	-0.090 (12)	-0.019 (7)
C26	0.257 (16)	0.071 (6)	0.204 (12)	-0.036 (9)	-0.035 (11)	0.032 (6)
C27	0.131 (8)	0.101 (7)	0.235 (14)	-0.010 (7)	-0.024 (9)	-0.058 (8)

Geometric parameters (Å, °)

Ni1—N1	1.955 (3)	С9—Н9	0.9300
Ni1—O2	1.989 (3)	C10-C11	1.346 (9)
Ni1—O1 ⁱ	2.060 (3)	C10—H10	0.9300
Ni1—N4	2.083 (3)	C11—C12	1.369 (8)
Ni1—N2	2.196 (4)	C11—H11	0.9300
Ni1—N3	2.201 (3)	С12—Н12	0.9300
N1—C1	1.328 (5)	C13—C14	1.363 (7)
N1—N1 ⁱ	1.409 (6)	С13—Н13	0.9300
N2—C12	1.300 (6)	C14—C15	1.335 (8)
N2—C8	1.301 (6)	C14—H14	0.9300
N3—C17	1.310 (6)	C15—C16	1.371 (9)
N3—C13	1.320 (6)	С15—Н15	0.9300
N4—C22	1.320 (5)	C16—C17	1.366 (8)
N4—C18	1.325 (5)	С16—Н16	0.9300
N5—C23	1.345 (11)	С17—Н17	0.9300
N5—C27	1.348 (11)	C18—C19	1.378 (6)
O1—C1	1.283 (4)	C18—H18	0.9300
O1—Ni1 ⁱ	2.060 (3)	C19—C20	1.344 (7)
O2—C3	1.302 (4)	С19—Н19	0.9300
C1—C2	1.495 (5)	C20—C21	1.378 (7)
C2—C7	1.399 (5)	C20—H20	0.9300
C2—C3	1.428 (5)	C21—C22	1.361 (6)
C3—C4	1.421 (5)	C21—H21	0.9300
C4—C5	1.359 (5)	С22—Н22	0.9300
C4—H4	0.9300	C23—C24	1.310 (11)
C5—C6	1.393 (6)	С23—Н23	0.9300
С5—Н5	0.9300	C24—C25	1.354 (12)
C6—C7	1.368 (6)	C24—H24	0.9300
С6—Н6	0.9300	C25—C26	1.30 (3)
С7—Н7	0.9300	С25—Н25	0.9300
C8—C9	1.371 (7)	C26—C27	1.337 (10)
С8—Н8	0.9300	C26—H26	0.9300
C9—C10	1.329 (8)	С27—Н27	0.9300

N1—Ni1—O2	90.75 (11)	С8—С9—Н9	120.4
N1—Ni1—O1 ⁱ	79.81 (11)	C9—C10—C11	117.1 (7)
O2—Ni1—O1 ⁱ	170.55 (10)	С9—С10—Н10	121.4
N1—Ni1—N4	175.46 (13)	C11—C10—H10	121.4
O2—Ni1—N4	93.76 (12)	C10-C11-C12	119.8 (7)
$O1^{i}$ Ni1 Ni	95.68 (12)	C10—C11—H11	120.1
N1—Ni1—N2	93.47 (13)	C12—C11—H11	120.1
O2—Ni1—N2	91.23 (13)	N2—C12—C11	124.1 (6)
01^{i} Ni1 N2	89.17 (13)	N2—C12—H12	118.0
N4—Ni1—N2	85.91 (13)	C11—C12—H12	118.0
N1—N11—N3	92.03 (13)	N3-C13-C14	123 2 (5)
O2—Ni1—N3	91.77 (12)	N3—C13—H13	118.4
Ω^{1i} Ni1 N3	88 77 (12)	C14—C13—H13	118.4
N/Nj1N3	88.37 (12)	$C_{15} - C_{14} - C_{13}$	120.3 (6)
N2_Ni1_N3	$173\ 70\ (12)$	C15-C14-H14	119.8
	112.1 (4)	C13 - C14 - H14	119.8
$C_1 = N_1 = N_1$	112.1(4)	C_{13}	117.0 (6)
	155.4 (5)	C14-C15-C16	117.9 (0)
	114.5 (3)	С14—С15—Н15	121.1
C12—N2—C8	114.8 (5)	C16—C15—H15	121.1
C12—N2—N11	123.2 (4)	C17—C16—C15	118.1 (6)
C8—N2—N1	121.9 (4)	CI/CI6HI6	120.9
C17 N3 - C13	115.9 (4)	C15—C16—H16	120.9
C17 = N3 = N11	121.8(3)	N3-C17-C10	124.0 (0)
C13 - N3 - N11	122.3 (3)	N3—C1/—H1/	1177
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	115.9 (4)	C10-C1/H1/	11/./
C_{22} N4 Ni1	123.1(3) 1210(3)	N4-C18-C19 N4 C18 H18	124.1 (3)
$C_{10} = N_{10} = N_{10}$	121.0(3) 1195(9)	11-110	117.9
	110.1 (2)	$C_{10} = C_{10} = C_{10}$	117.5
$C1 = O1 = N11^2$	110.1 (2)	C20-C19-C18	118.5 (5)
$C_3 = O_2 = N_1 I_1$	126.4 (2)	C20—C19—H19	120.7
OI = CI = NI	123.5 (4)	C18—C19—H19	120.7
01	117.6 (2)	C19 - C20 - C21	110.7 (3)
$C_1 = C_2$	117.0(3)	$C_{1}^{2} = C_{2}^{2} = H_{2}^{2} O_{1}^{2}$	120.0
$C_{7} - C_{2} - C_{1}$	119.2 (4)	$C_{21} = C_{20} = 1120$	120.0
$C_{3}^{$	125.3 (3)	C22_C21_C20	120.7
$0^{2}-0^{3}-0^{4}$	123.3(3) 118 2 (4)	C20—C21—H21	120.7
02 - C3 - C2	126 3 (4)	N4-C22-C21	124.1 (5)
C4—C3—C2	115.5 (4)	N4—C22—H22	117.9
C5—C4—C3	123.4 (4)	C21—C22—H22	117.9
С5—С4—Н4	118.3	C24—C23—N5	118.7 (9)
C3—C4—H4	118.3	C24—C23—H23	120.6
C4—C5—C6	120.6 (4)	N5—C23—H23	120.6
С4—С5—Н5	119.7	C23—C24—C25	121.5 (10)
С6—С5—Н5	119.7	C23—C24—H24	119.3
C7—C6—C5	117.8 (4)	C25—C24—H24	119.3
С7—С6—Н6	121.1	C26—C25—C24	119.8 (10)

С5—С6—Н6	121.1	C26—C25—H25	120.1
C6—C7—C2	123.4 (4)	C24—C25—H25	120.1
С6—С7—Н7	118.3	C25—C26—C27	119.7 (9)
С2—С7—Н7	118.3	C25—C26—H26	120.1
N2—C8—C9	124.9 (6)	С27—С26—Н26	120.1
N2—C8—H8	117.5	C26—C27—N5	120.4 (9)
С9—С8—Н8	117.5	С26—С27—Н27	119.8
С10—С9—С8	119.3 (7)	N5—C27—H27	119.8
С10—С9—Н9	120.4		
a			

Symmetry codes: (i) -x+1, -y, -z.

